Publikationen von B Bender
Alle Typen
Zeitschriftenartikel (17)
1.
Zeitschriftenartikel
12 (1), 635 (2025)
UltraCortex: Submillimeter Ultra-High Field 9.4 T Brain MR Image Collection and Manual Cortical Segmentations. Nature 2.
Zeitschriftenartikel
19 (2), e0296843 (2024)
MP2RAGE vs. MPRAGE surface-based morphometry in focal epilepsy. PLOS ONE 3.
Zeitschriftenartikel
38 (10), S. 1973 - 1974 (2023)
Reply to: "Susceptibility-Weighted Imaging Reveals Subcortical Iron Deposition in PLAN: The 'Double Cortex Sign'". Movement Disorders 4.
Zeitschriftenartikel
38 (5), S. 904 - 906 (2023)
Susceptibility-Weighted Imaging Reveals Subcortical Iron Deposition in PLA2G6-associated Neurodegeneration: The "Double Cortex Sign". Movement Disorders 5.
Zeitschriftenartikel
12, 22075 (2022)
Proof of principle for the clinical use of a CE-certified automatic imaging analysis tool in rare diseases studying hereditary spastic paraplegia type 4 (SPG4). Scientific Reports 6.
Zeitschriftenartikel
35 (1), S. 77 - 85 (2022)
GLINT: GlucoCEST in neoplastic tumors at 3 T-clinical results of GlucoCEST in gliomas. Magnetic Resonance Materials in Physics, Biology and Medicine 7.
Zeitschriftenartikel
35 (1), S. 87 - 104 (2022)
What do we know about dynamic glucose-enhanced (DGE) MRI and how close is it to the clinics? Horizon 2020 GLINT consortium report. Magnetic Resonance Materials in Physics, Biology and Medicine 8.
Zeitschriftenartikel
31 (4), S. 969 - 980 (2021)
T2-Pseudonormalization and Microstructural Characterization in Advanced Stages of Late-infantile Metachromatic Leukodystrophy. Clinical Neuroradiology 9.
Zeitschriftenartikel
84 (1), S. 450 - 466 (2020)
DeepCEST 3T: Robust MRI parameter determination and uncertainty quantification with neural networks-application to CEST imaging of the human brain at 3. Magnetic Resonance in Medicine 10.
Zeitschriftenartikel
40 (17), S. 5042 - 5055 (2019)
MP2RAGE multispectral voxel‐based morphometry in focal epilepsy. Human Brain Mapping 11.
Zeitschriftenartikel
82 (5), S. 1832 - 1847 (2019)
T1ρ‐based dynamic glucose‐enhanced (DGEρ) MRI at 3 T: method development and early clinical experience in the human brain. Magnetic Resonance in Medicine 12.
Zeitschriftenartikel
18 (3), S. 435 - 447 (2019)
Pattern of Cerebellar Atrophy in Friedreich’s Ataxia: Using the SUIT Template. The Cerebellum 13.
Zeitschriftenartikel
81 (6), S. 3901 - 3914 (2019)
DeepCEST: 9.4 T Chemical exchange saturation transfer MRI contrast predicted from 3 T data – a proof of concept study. Magnetic Resonance in Medicine 14.
Zeitschriftenartikel
81 (4), S. 2412 - 2423 (2019)
3D gradient echo snapshot CEST MRI with low power saturation for human studies at 3T. Magnetic Resonance in Medicine 15.
Zeitschriftenartikel
298, S. 16 - 22 (2019)
Possible artifacts in dynamic CEST MRI due to motion and field alterations. Journal of Magnetic Resonance 16.
Zeitschriftenartikel
179, S. 144 - 155 (2018)
Chemical exchange saturation transfer MRI contrast in the human brain at 9.4 T. NeuroImage 17.
Zeitschriftenartikel
212 (1), S. 55 - 63 (2011)
Tissue specific resonance frequencies of water and metabolites within the human brain. Journal of Magnetic Resonance Konferenzbeitrag (2)
18.
Konferenzbeitrag
FLEXseg: Next Generation Brain MRI Segmentation at 9.4 T. In: Medical Imaging with Deep Learning (MIDL 2022). Medical Imaging with Deep Learning (MIDL 2022), Zürich, Swtzerland, 06. Juli 2022 - 08. Juli 2022. (2022)
19.
Konferenzbeitrag
Super-Resolution for Ultra High-Field MR Images. In: Medical Imaging with Deep Learning (MIDL 2022). Medical Imaging with Deep Learning (MIDL 2022) , Zürich, Swtzerland , 06. Juli 2022 - 08. Juli 2022. (2022)
Meeting Abstract (16)
20.
Meeting Abstract
33 (Supplement 1), 321, S. S78 - S79. 58. Jahrestagung der Deutschen Gesellschaft für Neuroradiologie e.V. und 30. Jahrestagung der Österreichischen Gesellschaft für Neuroradiologie e.V. (NEURORAD 2023), Kassel, Germany, 04. Oktober 2023 - 06. Oktober 2023. Springer (2023)
Integration of Automated Brain MRI Segmentation and Longitudinal Atrophy Analysis Generalizes In Forecasting Progression from Mild Cognitive Impairment to Alzheimer’s Disease. In Clinical Neuroradiology,